\(\int \cot ^3(c+d x) \sqrt {a+b \sec (c+d x)} \, dx\) [322]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 215 \[ \int \cot ^3(c+d x) \sqrt {a+b \sec (c+d x)} \, dx=-\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {a \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{\sqrt {a-b} d}-\frac {3 b \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{4 \sqrt {a-b} d}+\frac {a \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b} d}+\frac {3 b \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{4 \sqrt {a+b} d}-\frac {\cot ^2(c+d x) \sqrt {a+b \sec (c+d x)}}{2 d} \]

[Out]

-2*arctanh((a+b*sec(d*x+c))^(1/2)/a^(1/2))*a^(1/2)/d+a*arctanh((a+b*sec(d*x+c))^(1/2)/(a-b)^(1/2))/d/(a-b)^(1/
2)-3/4*b*arctanh((a+b*sec(d*x+c))^(1/2)/(a-b)^(1/2))/d/(a-b)^(1/2)+a*arctanh((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2
))/d/(a+b)^(1/2)+3/4*b*arctanh((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2))/d/(a+b)^(1/2)-1/2*cot(d*x+c)^2*(a+b*sec(d*x
+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3970, 912, 1329, 1192, 12, 1107, 212, 1184, 213} \[ \int \cot ^3(c+d x) \sqrt {a+b \sec (c+d x)} \, dx=-\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{d}-\frac {3 b \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{4 d \sqrt {a-b}}+\frac {a \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{d \sqrt {a-b}}+\frac {a \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{d \sqrt {a+b}}+\frac {3 b \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{4 d \sqrt {a+b}}-\frac {\cot ^2(c+d x) \sqrt {a+b \sec (c+d x)}}{2 d} \]

[In]

Int[Cot[c + d*x]^3*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a]])/d + (a*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a - b]])/(
Sqrt[a - b]*d) - (3*b*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a - b]])/(4*Sqrt[a - b]*d) + (a*ArcTanh[Sqrt[a + b
*Sec[c + d*x]]/Sqrt[a + b]])/(Sqrt[a + b]*d) + (3*b*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]])/(4*Sqrt[a +
 b]*d) - (Cot[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]])/(2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 912

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{q = De
nominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + g*(x^q/e))^n*((c*d^2 + a*e^2)/e^2 - 2*c*
d*(x^q/e^2) + c*(x^(2*q)/e^2))^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*
g, 0] && NeQ[c*d^2 + a*e^2, 0] && IntegersQ[n, p] && FractionQ[m]

Rule 1107

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/(b/
2 - q/2 + c*x^2), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 1184

Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(d + e*x
^2)^q/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a
*e^2, 0] && IntegerQ[q]

Rule 1192

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(a*b*e - d*(b^2 - 2*a
*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1329

Int[(((f_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Dist[
f^2/(c*d^2 - b*d*e + a*e^2), Int[(f*x)^(m - 2)*(a*e + c*d*x^2)*(a + b*x^2 + c*x^4)^p, x], x] - Dist[d*e*(f^2/(
c*d^2 - b*d*e + a*e^2)), Int[(f*x)^(m - 2)*((a + b*x^2 + c*x^4)^(p + 1)/(d + e*x^2)), x], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 0]

Rule 3970

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(-1)^((m - 1
)/2)/(d*b^(m - 1)), Subst[Int[(b^2 - x^2)^((m - 1)/2)*((a + x)^n/x), x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {b^4 \text {Subst}\left (\int \frac {\sqrt {a+x}}{x \left (b^2-x^2\right )^2} \, dx,x,b \sec (c+d x)\right )}{d} \\ & = \frac {\left (2 b^4\right ) \text {Subst}\left (\int \frac {x^2}{\left (-a+x^2\right ) \left (-a^2+b^2+2 a x^2-x^4\right )^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d} \\ & = \frac {\left (2 b^2\right ) \text {Subst}\left (\int \frac {-a^2+b^2+a x^2}{\left (-a^2+b^2+2 a x^2-x^4\right )^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d}+\frac {\left (2 a b^2\right ) \text {Subst}\left (\int \frac {1}{\left (-a+x^2\right ) \left (-a^2+b^2+2 a x^2-x^4\right )} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d} \\ & = -\frac {b^2 \sqrt {a+b \sec (c+d x)}}{2 d \left (a^2-b^2-2 a (a+b \sec (c+d x))+(a+b \sec (c+d x))^2\right )}+\frac {\left (2 a b^2\right ) \text {Subst}\left (\int \left (-\frac {1}{b^2 \left (a-x^2\right )}+\frac {1}{2 b^2 \left (a+b-x^2\right )}-\frac {1}{2 b^2 \left (-a+b+x^2\right )}\right ) \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d}+\frac {\text {Subst}\left (\int \frac {6 b^2 \left (a^2-b^2\right )}{-a^2+b^2+2 a x^2-x^4} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{4 \left (a^2-b^2\right ) d} \\ & = -\frac {b^2 \sqrt {a+b \sec (c+d x)}}{2 d \left (a^2-b^2-2 a (a+b \sec (c+d x))+(a+b \sec (c+d x))^2\right )}+\frac {a \text {Subst}\left (\int \frac {1}{a+b-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d}-\frac {a \text {Subst}\left (\int \frac {1}{-a+b+x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d}-\frac {(2 a) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d}+\frac {\left (3 b^2\right ) \text {Subst}\left (\int \frac {1}{-a^2+b^2+2 a x^2-x^4} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{2 d} \\ & = -\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {a \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{\sqrt {a-b} d}+\frac {a \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b} d}-\frac {b^2 \sqrt {a+b \sec (c+d x)}}{2 d \left (a^2-b^2-2 a (a+b \sec (c+d x))+(a+b \sec (c+d x))^2\right )}-\frac {(3 b) \text {Subst}\left (\int \frac {1}{a-b-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{4 d}+\frac {(3 b) \text {Subst}\left (\int \frac {1}{a+b-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{4 d} \\ & = -\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {a \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{\sqrt {a-b} d}-\frac {3 b \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{4 \sqrt {a-b} d}+\frac {a \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b} d}+\frac {3 b \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{4 \sqrt {a+b} d}-\frac {b^2 \sqrt {a+b \sec (c+d x)}}{2 d \left (a^2-b^2-2 a (a+b \sec (c+d x))+(a+b \sec (c+d x))^2\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.45 (sec) , antiderivative size = 212, normalized size of antiderivative = 0.99 \[ \int \cot ^3(c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\frac {-\frac {b \arctan \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {-a+b}}\right )}{\sqrt {-a+b}}-8 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )+\frac {4 \sqrt {-(a-b)^2} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{\sqrt {-a+b}}+\frac {4 a \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}+\frac {3 b \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-2 \cot ^2(c+d x) \sqrt {a+b \sec (c+d x)}}{4 d} \]

[In]

Integrate[Cot[c + d*x]^3*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-((b*ArcTan[Sqrt[a + b*Sec[c + d*x]]/Sqrt[-a + b]])/Sqrt[-a + b]) - 8*Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[c + d*x]
]/Sqrt[a]] + (4*Sqrt[-(a - b)^2]*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a - b]])/Sqrt[-a + b] + (4*a*ArcTanh[Sq
rt[a + b*Sec[c + d*x]]/Sqrt[a + b]])/Sqrt[a + b] + (3*b*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]])/Sqrt[a
+ b] - 2*Cot[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]])/(4*d)

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2071\) vs. \(2(177)=354\).

Time = 2.20 (sec) , antiderivative size = 2072, normalized size of antiderivative = 9.64

method result size
default \(\text {Expression too large to display}\) \(2072\)

[In]

int(cot(d*x+c)^3*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/8/d/(a-b)^(3/2)/(a+b)*(-((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^
2*csc(d*x+c)^2+a+b)^(1/2)*(a-b)^(3/2)*a*(1-cos(d*x+c))^4*csc(d*x+c)^4+((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(
d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)*(a-b)^(3/2)*b*(1-cos(d*x+c))^4*csc(d*x+c
)^4+8*a^(3/2)*ln(2*(-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+b*(1-cos(d*x+c))^2*csc(d*x+c)^2+2*a^(1/2)*((1-cos(d*x+c
))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)+2*a+b)/((1-co
s(d*x+c))^2*csc(d*x+c)^2+1))*(1-cos(d*x+c))^2*(a-b)^(3/2)*csc(d*x+c)^2+8*a^(1/2)*ln(2*(-2*a*(1-cos(d*x+c))^2*c
sc(d*x+c)^2+b*(1-cos(d*x+c))^2*csc(d*x+c)^2+2*a^(1/2)*((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(
d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)+2*a+b)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))*(1-cos(d*x+c))
^2*(a-b)^(3/2)*b*csc(d*x+c)^2-4*(a+b)^(1/2)*ln(2*(-a*(1-cos(d*x+c))^2*csc(d*x+c)^2+(a+b)^(1/2)*((1-cos(d*x+c))
^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)+a+b)/(1-cos(d*x
+c))^2*sin(d*x+c)^2)*(1-cos(d*x+c))^2*(a-b)^(3/2)*a*csc(d*x+c)^2-3*(a+b)^(1/2)*ln(2*(-a*(1-cos(d*x+c))^2*csc(d
*x+c)^2+(a+b)^(1/2)*((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(
d*x+c)^2+a+b)^(1/2)+a+b)/(1-cos(d*x+c))^2*sin(d*x+c)^2)*(1-cos(d*x+c))^2*(a-b)^(3/2)*b*csc(d*x+c)^2+((1-cos(d*
x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)*(a-b)^(3/2
)*a*(1-cos(d*x+c))^2*csc(d*x+c)^2-((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(
d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)*(a-b)^(3/2)*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+((1-cos(d*x+c))^4*a*csc(d*x+c)^4
-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(3/2)*(a-b)^(3/2)+4*a^3*ln((a*(1-cos(d
*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(
d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)*(a-b)^(1/2)-a)/(a-b)^(1/2))*(1-cos(d*x+c))^2*csc(d*x+c)^
2-3*a^2*ln((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(
1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)*(a-b)^(1/2)-a)/(a-b)^(1/2))*(1-cos
(d*x+c))^2*b*csc(d*x+c)^2-4*ln((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2+((1-cos(d*x+c)
)^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a+b)^(1/2)*(a-b)^(1/2)-a)
/(a-b)^(1/2))*a*b^2*(1-cos(d*x+c))^2*csc(d*x+c)^2+3*ln((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc
(d*x+c)^2+((1-cos(d*x+c))^4*a*csc(d*x+c)^4-(1-cos(d*x+c))^4*b*csc(d*x+c)^4-2*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+a
+b)^(1/2)*(a-b)^(1/2)-a)/(a-b)^(1/2))*b^3*(1-cos(d*x+c))^2*csc(d*x+c)^2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*((a
*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)/(
1-cos(d*x+c))^2*sin(d*x+c)^2/((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)*((1-cos(d*
x+c))^2*csc(d*x+c)^2-1))^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 364 vs. \(2 (177) = 354\).

Time = 1.81 (sec) , antiderivative size = 3523, normalized size of antiderivative = 16.39 \[ \int \cot ^3(c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate(cot(d*x+c)^3*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/16*(8*(a^2 - b^2)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)^2 + 8*((a^2 - b^2)*cos(d*x + c)^2 -
a^2 + b^2)*sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 + 4*(2*a*cos(d*x + c)^2 + b*cos(d*x +
c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))) - ((4*a^2 + a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 - a*b + 3
*b^2)*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x +
 c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2
*cos(d*x + c) + 1)) + ((4*a^2 - a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 + a*b + 3*b^2)*sqrt(a + b)*log(-((8*a^2 +
8*a*b + b^2)*cos(d*x + c)^2 + b^2 + 4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x
+ c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/((a^2 - b^2)
*d*cos(d*x + c)^2 - (a^2 - b^2)*d), 1/16*(8*(a^2 - b^2)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)^2
 - 2*((4*a^2 - a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 + a*b + 3*b^2)*sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqrt((a*c
os(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) + 8*((a^2 - b^2)*cos(d*x + c)^2 - a^
2 + b^2)*sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 + 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c)
)*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))) - ((4*a^2 + a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 - a*b + 3*b
^2)*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c
))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*c
os(d*x + c) + 1)))/((a^2 - b^2)*d*cos(d*x + c)^2 - (a^2 - b^2)*d), 1/16*(8*(a^2 - b^2)*sqrt((a*cos(d*x + c) +
b)/cos(d*x + c))*cos(d*x + c)^2 + 2*((4*a^2 + a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 - a*b + 3*b^2)*sqrt(-a + b)*
arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b)) + 8*
((a^2 - b^2)*cos(d*x + c)^2 - a^2 + b^2)*sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 + 4*(2*a
*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))) + ((4*a^2 - a*b - 3*b^2)*co
s(d*x + c)^2 - 4*a^2 + a*b + 3*b^2)*sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 + 4*((2*a + b
)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos
(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/((a^2 - b^2)*d*cos(d*x + c)^2 - (a^2 - b^2)*d), 1/8*(4*(a^2
 - b^2)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)^2 + ((4*a^2 + a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2
 - a*b + 3*b^2)*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a
 - b)*cos(d*x + c) + b)) - ((4*a^2 - a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 + a*b + 3*b^2)*sqrt(-a - b)*arctan(2*
sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) + 4*((a^2 - b^
2)*cos(d*x + c)^2 - a^2 + b^2)*sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 + 4*(2*a*cos(d*x +
 c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))))/((a^2 - b^2)*d*cos(d*x + c)^2 - (a^2
 - b^2)*d), 1/16*(8*(a^2 - b^2)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)^2 + 16*((a^2 - b^2)*cos(d
*x + c)^2 - a^2 + b^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*co
s(d*x + c) + b)) - ((4*a^2 + a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 - a*b + 3*b^2)*sqrt(a - b)*log(-((8*a^2 - 8*a
*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a - b)*sqrt((a*cos(d*x + c
) + b)/cos(d*x + c)) + 2*(4*a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + ((4*a^2 - a*b
- 3*b^2)*cos(d*x + c)^2 - 4*a^2 + a*b + 3*b^2)*sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 +
4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b +
 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/((a^2 - b^2)*d*cos(d*x + c)^2 - (a^2 - b^2)*d),
1/16*(8*(a^2 - b^2)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)^2 + 16*((a^2 - b^2)*cos(d*x + c)^2 -
a^2 + b^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) +
 b)) - 2*((4*a^2 - a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 + a*b + 3*b^2)*sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqrt(
(a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) - ((4*a^2 + a*b - 3*b^2)*cos(d*x
 + c)^2 - 4*a^2 - a*b + 3*b^2)*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a - b)*cos
(d*x + c)^2 + b*cos(d*x + c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3*b^2)*cos(d*x
+ c))/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)))/((a^2 - b^2)*d*cos(d*x + c)^2 - (a^2 - b^2)*d), 1/16*(8*(a^2 - b
^2)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)^2 + 16*((a^2 - b^2)*cos(d*x + c)^2 - a^2 + b^2)*sqrt(
-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) + 2*((4*a^2
 + a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 - a*b + 3*b^2)*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c)
 + b)/cos(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b)) + ((4*a^2 - a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2
 + a*b + 3*b^2)*sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 + 4*((2*a + b)*cos(d*x + c)^2 + b
*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x
+ c)^2 - 2*cos(d*x + c) + 1)))/((a^2 - b^2)*d*cos(d*x + c)^2 - (a^2 - b^2)*d), 1/8*(4*(a^2 - b^2)*sqrt((a*cos(
d*x + c) + b)/cos(d*x + c))*cos(d*x + c)^2 + 8*((a^2 - b^2)*cos(d*x + c)^2 - a^2 + b^2)*sqrt(-a)*arctan(2*sqrt
(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) + ((4*a^2 + a*b - 3*b^2)*cos
(d*x + c)^2 - 4*a^2 - a*b + 3*b^2)*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))
*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b)) - ((4*a^2 - a*b - 3*b^2)*cos(d*x + c)^2 - 4*a^2 + a*b + 3*b^2)*sqr
t(-a - b)*arctan(2*sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) +
 b)))/((a^2 - b^2)*d*cos(d*x + c)^2 - (a^2 - b^2)*d)]

Sympy [F]

\[ \int \cot ^3(c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int \sqrt {a + b \sec {\left (c + d x \right )}} \cot ^{3}{\left (c + d x \right )}\, dx \]

[In]

integrate(cot(d*x+c)**3*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*cot(c + d*x)**3, x)

Maxima [F]

\[ \int \cot ^3(c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int { \sqrt {b \sec \left (d x + c\right ) + a} \cot \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(cot(d*x+c)^3*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*cot(d*x + c)^3, x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 514 vs. \(2 (177) = 354\).

Time = 0.84 (sec) , antiderivative size = 514, normalized size of antiderivative = 2.39 \[ \int \cot ^3(c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\frac {{\left (\frac {16 \, a \arctan \left (-\frac {\sqrt {a - b} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b} + \sqrt {a - b}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} - \frac {2 \, {\left (4 \, a + 3 \, b\right )} \arctan \left (-\frac {\sqrt {a - b} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b}}{\sqrt {-a - b}}\right )}{\sqrt {-a - b}} + \frac {{\left (4 \, a - 3 \, b\right )} \log \left ({\left | {\left (\sqrt {a - b} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b}\right )} {\left (a - b\right )} - \sqrt {a - b} a \right |}\right )}{\sqrt {a - b}} + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b} - \frac {2 \, {\left ({\left (\sqrt {a - b} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b}\right )} a - {\left (a + b\right )} \sqrt {a - b}\right )}}{{\left (\sqrt {a - b} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b}\right )}^{2} - a - b}\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{8 \, d} \]

[In]

integrate(cot(d*x+c)^3*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/8*(16*a*arctan(-1/2*(sqrt(a - b)*tan(1/2*d*x + 1/2*c)^2 - sqrt(a*tan(1/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/
2*c)^4 - 2*a*tan(1/2*d*x + 1/2*c)^2 + a + b) + sqrt(a - b))/sqrt(-a))/sqrt(-a) - 2*(4*a + 3*b)*arctan(-(sqrt(a
 - b)*tan(1/2*d*x + 1/2*c)^2 - sqrt(a*tan(1/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 - 2*a*tan(1/2*d*x + 1/
2*c)^2 + a + b))/sqrt(-a - b))/sqrt(-a - b) + (4*a - 3*b)*log(abs((sqrt(a - b)*tan(1/2*d*x + 1/2*c)^2 - sqrt(a
*tan(1/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 - 2*a*tan(1/2*d*x + 1/2*c)^2 + a + b))*(a - b) - sqrt(a - b
)*a))/sqrt(a - b) + sqrt(a*tan(1/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 - 2*a*tan(1/2*d*x + 1/2*c)^2 + a
+ b) - 2*((sqrt(a - b)*tan(1/2*d*x + 1/2*c)^2 - sqrt(a*tan(1/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 - 2*a
*tan(1/2*d*x + 1/2*c)^2 + a + b))*a - (a + b)*sqrt(a - b))/((sqrt(a - b)*tan(1/2*d*x + 1/2*c)^2 - sqrt(a*tan(1
/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 - 2*a*tan(1/2*d*x + 1/2*c)^2 + a + b))^2 - a - b))*sgn(cos(d*x +
c))/d

Mupad [F(-1)]

Timed out. \[ \int \cot ^3(c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^3\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(cot(c + d*x)^3*(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(cot(c + d*x)^3*(a + b/cos(c + d*x))^(1/2), x)